A short description of the post.
1.Load packages we will use
download co2 emissions per capita from Our world in Data into the directory for the post.
Assign the location of the file to file_csv
. The data should be in the same directory as this file. -Read the data into R and assign emissions
file_csv <- here("_posts","2021-03-03-reading-and-writing-data","co-emissions-per-capita.csv")
emissions <- read_csv(file_csv)
emissions
emissions
# A tibble: 22,383 x 4
Entity Code Year `Per capita CO2 emissions`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# … with 22,373 more rows
5.start with emissions
data THEN - Use clean_names
from the janitor package to make easier to work with - assign the output totidy_emissions
- show the first 10 rows of tidy_emission
tidy_emissions <- emissions %>%
clean_names()
tidy_emissions
# A tibble: 22,383 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.00191
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.0130
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.0380
# … with 22,373 more rows
6 start with the tidy_emissions
THEN -use filter
to extract rows with years == 2011
-use skim
to calculate the descriptive statistics
Name | Piped data |
Number of rows | 220 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
entity | 0 | 1.00 | 4 | 32 | 0 | 220 | 0 |
code | 12 | 0.95 | 3 | 8 | 0 | 208 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1 | 2011.00 | 0.00 | 2011.00 | 2011.00 | 2011.00 | 2011.00 | 2011.00 | ▁▁▇▁▁ |
per_capita_co2_emissions | 0 | 1 | 5.14 | 6.04 | 0.04 | 0.82 | 3.19 | 7.39 | 39.12 | ▇▂▁▁▁ |
tidy_emissions
then extract rows with year==2011
and are missing a code# A tibble: 12 x 4
entity code year per_capita_co2_emissions
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 2011 1.18
2 Asia <NA> 2011 4.12
3 Asia (excl. China & India) <NA> 2011 3.91
4 EU-27 <NA> 2011 7.58
5 EU-28 <NA> 2011 7.55
6 Europe <NA> 2011 8.17
7 Europe (excl. EU-27) <NA> 2011 9.01
8 Europe (excl. EU-28) <NA> 2011 9.46
9 North America <NA> 2011 12.4
10 North America (excl. USA) <NA> 2011 5.18
11 Oceania <NA> 2011 12.1
12 South America <NA> 2011 2.69
filter
to extract rows with year==2011 and without missing codes THEN -use select
to drop the year
variable THEN -use rename
to change the variable entity
to country
-assign the output to emissions_2000
per_capita_co2_emissions
? -start with emissions_2011
THEN -use slice_max
to extract then 15 rows with the per_caita_co2_emissions
assign the output to max_15_emitters
max_15_emitters <- emissions_2011 %>%
slice_max(per_capita_co2_emissions,n=15)
per_capita_co2_emissions
? -start with emissions_2011
THEN -use slice_min
to extract the 15 rows with the lowest values -assign the output min_15_emitters
min_15_emitters <- emissions_2011 %>%
slice_min(per_capita_co2_emissions,n=15)
bind_rows
to bind together the max_15_emitters
and min_15_emitters
- assign the output to max_min_15
max_min_15 <- bind_rows(max_15_emitters,min_15_emitters)
max_min_15
to 3 file formatsmax_min_15 %>% write_csv("max_min_15.csv")
max_min_15 %>% write_tsv("max_min_15.tsv")
max_min_15 %>% write_delim("max_min_15.psv", delim = "|")
max_min_15_csv <-read_csv("max_min_15.csv")
max_min_15_tsv <- read_tsv("max_min_15.tsv")
max_min_15_psv <- read_delim("max_min_15.psv", delim="|")
setdiff
to check for any differences among max_min_15_csv
, max_min_15_tsv
and max_min_15_psv
setdiff(max_min_15_csv, max_min_15_tsv, max_min_15_psv)
# A tibble: 0 x 3
# … with 3 variables: country <chr>, code <chr>,
# per_capita_co2_emissions <dbl>
Are there any differences?
country
in max_min_151
for plotting and assign to max_min_15_plot_data -start with emissions_2000
THEN -use mutate
to reorder country
according per_capital_co2_emissions
max_min_15_plot_data <- max_min_15 %>%
mutate(country = reorder(country,per_capita_co2_emissions))
max_min_15_plot_data
ggplot(data=max_min_15_plot_data,
mapping = aes(x = per_capita_co2_emissions, y = country)) +
geom_col() +
labs(title = "the top 15 and bottom 15 per capita CO2 emissions",
subtitle = "for 2011",
x = NULL,
y = NULL)
ggsave(filename = "preview.png",
path = here("_posts", "2021-03-03-reading-and-writing-data"))
preview: preview.png